Affiliation:
1. Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, Connecticut, USA
Abstract
ABSTRACT
Dynein light chain LC8 is highly conserved among eukaryotes and has both dynein-dependent and dynein-independent functions. Interestingly, LC8 was identified as a subunit of the class I transcription factor A (CITFA), which is essential for transcription by RNA polymerase I (Pol I) in the parasite
Trypanosoma brucei
. Given that LC8 has never been identified with a basal transcription factor and that
T. brucei
relies on RNA Pol I for expressing the variant surface glycoprotein (VSG), the key protein in antigenic variation, we investigated the CITFA-specific role of LC8. Depletion of LC8 from mammalian-infective bloodstream trypanosomes affected cell cycle progression, reduced the abundances of rRNA and
VSG
mRNA, and resulted in rapid cell death. Sedimentation analysis, coimmunoprecipitation of recombinant proteins, and bioinformatic analysis revealed an LC8 binding site near the N terminus of the subunit CITFA2. Mutation of this site prevented the formation of a CITFA2-LC8 heterotetramer and,
in vivo
, was lethal, affecting assembly of a functional CITFA complex. Gel shift assays and UV cross-linking experiments identified CITFA2 as a promoter-binding CITFA subunit. Accordingly, silencing of
LC8
or
CITFA2
resulted in a loss of CITFA from RNA Pol I promoters. Hence, we discovered an LC8 interaction that, unprecedentedly, has a basal function in transcription.
Funder
HHS | NIH | National Institute of Allergy and Infectious Diseases
Publisher
American Society for Microbiology
Subject
Cell Biology,Molecular Biology
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献