Phenotypic Diversity of Infectious Red Sea Bream Iridovirus Isolates from Cultured Fish in Japan

Author:

Shinmoto Hajime1,Taniguchi Ken2,Ikawa Takuya2,Kawai Kenji2,Oshima Syun-ichirou1

Affiliation:

1. Laboratory of Cell Structure and Function, Division of Marine Bioresource Science, Graduate School of Kuroshio Science, Kochi University, Nankoku, Kochi 783-8502, Japan

2. Fish Disease Laboratory, Department of Aquaculture, Kochi University, Nankoku, Kochi 783-8502, Japan

Abstract

ABSTRACT Megalocytivirus is causing economically serious mass mortality by infecting fish in and around the Pacific region of Asia. The recent emergence of many new iridoviruses has drawn attention to the marked taxonomic variation within this virus family. Most studies of these viruses have not included extensive study of these emergent species. We explored the emergence of red sea bream iridovirus (RSIV) on a fish farm in Japan, and we specifically endeavored to quantify genetic and phenotypic differences between RSIV isolates using in vitro and in vivo methods. The three isolates had identical major capsid protein sequences, and they were closely related to Korean RSIV isolates. In vitro studies revealed that the isolates differed in replication rate, which was determined by real-time quantitative PCR of viral genomes in infected cells and cell culture supernatant, and in cell viability, estimated by the MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay for infected cells. In vivo studies showed that the isolates exhibit different virulence characteristics: infected red sea bream showed either acute death or subacute death according to infection with different isolates. Significant differences were seen in the antigenicity of isolates by a formalin-inactivated vaccine test. These results revealed that variant characteristics exist in the same phylogenetic location in emergent iridoviruses. We suggest that this strain variation would expand the host range in iridoviral epidemics.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3