Detection of a Novel and Highly Divergent Coronavirus from Asian Leopard Cats and Chinese Ferret Badgers in Southern China

Author:

Dong B. Q.1,Liu W.1,Fan X. H.2,Vijaykrishna D.3,Tang X. C.3,Gao F.1,Li L. F.3,Li G. J.2,Zhang J. X.3,Yang L. Q.1,Poon L. L. M.3,Zhang S. Y.4,Peiris J. S. M.3,Smith G. J. D.3,Chen H.3,Guan Y.3

Affiliation:

1. Guangxi Center for Disease Control and Prevention

2. Department of Microbiology and Immunology, Guangxi Medical University, Nanning 530021

3. State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR

4. School of Life Sciences, East China Normal University, Shanghai 200062, China

Abstract

ABSTRACT Since an outbreak of severe acute respiratory syndrome (SARS) was averted in 2004, many novel coronaviruses have been recognized from different species, including humans. Bats have provided the most diverse assemblages of coronaviruses, suggesting that they may be the natural reservoir. Continued virological surveillance has proven to be the best way to avert this infectious disease at the source. Here we provide the first description of a previously unidentified coronavirus lineage detected from wild Asian leopard cats ( Prionailurus bengalensis ) and Chinese ferret badgers ( Melogale moschata ) during virological surveillance in southern China. Partial genome analysis revealed a typical coronavirus genome but with a unique putative accessory gene organization. Phylogenetic analyses revealed that the envelope, membrane, and nucleoprotein structural proteins and the two conserved replicase domains, putative RNA-dependent RNA polymerase and RNA helicase, of these novel coronaviruses were most closely related to those of group 3 coronaviruses identified from birds, while the spike protein gene was most closely related to that of group 1 coronaviruses from mammals. However, these viruses always fell into an outgroup phylogenetic relationship with respect to other coronaviruses and had low amino acid similarity to all known coronavirus groups, indicating that they diverged early in the evolutionary history of coronaviruses. These results suggest that these viruses may represent a previously unrecognized evolutionary pathway, or possibly an unidentified coronavirus group. This study demonstrates the importance of systematic virological surveillance in market animals for understanding the evolution and emergence of viruses with infectious potential.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3