Affiliation:
1. Department of Microbiology and Immunology
2. Department of Oncology, Georgetown University Medical Center, Washington, DC 20057
3. Viral Pathogenesis Section, Laboratory of Viral Diseases, NIAID, NIH, Bethesda, Maryland 20892
Abstract
ABSTRACT
West Nile virus and dengue virus are mosquito-borne flaviviruses that cause a large number of human infections each year. No vaccines or chemotherapeutics are currently available. These viruses encode a serine protease that is essential for polyprotein processing, a required step in the viral replication cycle. In this study, a high-throughput screening assay for the West Nile virus protease was employed to screen ∼32,000 small-molecule compounds for identification of inhibitors. Lead inhibitor compounds with three distinct core chemical structures (1 to 3) were identified. In a secondary screening of selected compounds, two compounds, belonging to the 8-hydroxyquinoline family (compounds A and B) and containing core structure 1, were identified as potent inhibitors of the West Nile virus protease, with
K
i
values of 3.2 ± 0.3 μM and 3.4 ± 0.6 μM, respectively. These compounds inhibited the dengue virus type 2 protease with
K
i
values of 28.6 ± 5.1 μM and 30.2 ± 8.6 μM, respectively, showing some selectivity in the inhibition of these viral proteases. However, the compounds show no inhibition of cellular serine proteases, trypsin, or factor Xa. Kinetic analysis and molecular docking of compound B onto the known crystal structure of the West Nile virus protease indicate that the inhibitor binds in the substrate-binding cleft. Furthermore, compound B was capable of inhibiting West Nile virus RNA replication in cultured Vero cells (50% effective concentration, 1.4 ± 0.4 μM; selectivity index, 100), presumably by inhibition of polyprotein processing.
Publisher
American Society for Microbiology
Subject
Infectious Diseases,Pharmacology (medical),Pharmacology
Cited by
85 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献