Identification and Biochemical Characterization of Small-Molecule Inhibitors of West Nile Virus Serine Protease by a High-Throughput Screen

Author:

Mueller Niklaus H.1,Pattabiraman Nagarajan2,Ansarah-Sobrinho Camilo3,Viswanathan Prasanth1,Pierson Theodore C.3,Padmanabhan R.1

Affiliation:

1. Department of Microbiology and Immunology

2. Department of Oncology, Georgetown University Medical Center, Washington, DC 20057

3. Viral Pathogenesis Section, Laboratory of Viral Diseases, NIAID, NIH, Bethesda, Maryland 20892

Abstract

ABSTRACT West Nile virus and dengue virus are mosquito-borne flaviviruses that cause a large number of human infections each year. No vaccines or chemotherapeutics are currently available. These viruses encode a serine protease that is essential for polyprotein processing, a required step in the viral replication cycle. In this study, a high-throughput screening assay for the West Nile virus protease was employed to screen ∼32,000 small-molecule compounds for identification of inhibitors. Lead inhibitor compounds with three distinct core chemical structures (1 to 3) were identified. In a secondary screening of selected compounds, two compounds, belonging to the 8-hydroxyquinoline family (compounds A and B) and containing core structure 1, were identified as potent inhibitors of the West Nile virus protease, with K i values of 3.2 ± 0.3 μM and 3.4 ± 0.6 μM, respectively. These compounds inhibited the dengue virus type 2 protease with K i values of 28.6 ± 5.1 μM and 30.2 ± 8.6 μM, respectively, showing some selectivity in the inhibition of these viral proteases. However, the compounds show no inhibition of cellular serine proteases, trypsin, or factor Xa. Kinetic analysis and molecular docking of compound B onto the known crystal structure of the West Nile virus protease indicate that the inhibitor binds in the substrate-binding cleft. Furthermore, compound B was capable of inhibiting West Nile virus RNA replication in cultured Vero cells (50% effective concentration, 1.4 ± 0.4 μM; selectivity index, 100), presumably by inhibition of polyprotein processing.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

Cited by 85 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3