Identification and Distribution of Mycobacterium leprae Genotypes in a Region of High Leprosy Prevalence in China: a 3-Year Molecular Epidemiological Study

Author:

Weng Xiaoman1,Wang Zheng1,Liu Jian1,Kimura Miyako2,Black William C.2,Brennan Patrick J.2,Li Huanying1,Vissa Varalakshmi D.2

Affiliation:

1. Beijing Friendship Hospital—Affiliate of Capital University of Medical Sciences, Beijing Tropical Medicine Research Institute, 95 Yong An Road, Beijing 100050, People's Republic of China

2. Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado 80523

Abstract

ABSTRACT Multiple-locus variable-number tandem-repeat (VNTR) analysis (MLVA) has been proposed as a means of strain typing for tracking the transmission of leprosy. However, empirical data for a defined population are lacking. To this end, a study was initiated to assess the diversity and distribution of prevalent Mycobacterium leprae strains in Qiubei County, Yunnan Province, People's Republic of China, where the annual detection rate of leprosy is 10-fold higher than the national average rate. Sixty-eight newly diagnosed leprosy patients were included in the study. MLVA at eight M. leprae loci was applied using DNA extracts from skin biopsies. The number of alleles per locus ranged from 4 to 24, providing adequate strain discrimination. MLVA strain typing identified several clusters of patients whose M. leprae specimens shared similar VNTR profiles. Two of these clusters were comprised of patients who resided predominantly in the north and northwest parts of Qiubei County. Furthermore, it was found that multicase families are common in this county: 23 of the 68 patients were from 11 families. Intrafamilial VNTR profiles closely matched within six families, although they were different between the families. Moreover, VNTR patterns related to those found in some multicase families were also detected in patients in the same or adjacent townships, indicating the utility of VNTR strain typing to identify and detect short-range transmission events. Social contact through village markets is proposed as a means of transmission.

Publisher

American Society for Microbiology

Subject

Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3