Affiliation:
1. Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California, USA
2. Endocrinology Program, University of California, Berkeley, California, USA
Abstract
ABSTRACT
The role of AMP-activated protein kinase (AMPK) in promoting fatty acid (FA) oxidation in various tissues, such as liver and muscle, has been well understood. However, the role of AMPK in lipolysis and FA metabolism in adipose tissue has been controversial. To investigate the role of AMPK in the regulation of adipose lipolysis
in vivo
, we generated mice with adipose-tissue-specific knockout of both the α1 and α2 catalytic subunits of AMPK (AMPK-ASKO mice) by using aP2-Cre and adiponectin-Cre. Both models of AMPK-ASKO ablation show no changes in desnutrin/ATGL levels but have defective phosphorylation of desnutrin/ATGL at S406 to decrease its triacylglycerol (TAG) hydrolase activity, lowering basal lipolysis in adipose tissue. These mice also show defective phosphorylation of hormone-sensitive lipase (HSL) at S565, with higher phosphorylation at protein kinase A sites S563 and S660, increasing its hydrolase activity and isoproterenol-stimulated lipolysis. With higher overall adipose lipolysis, both models of AMPK-ASKO mice are lean, having smaller adipocytes with lower TAG and higher intracellular free-FA levels. Moreover, FAs from higher lipolysis activate peroxisome proliferator-activated receptor delta to induce FA oxidative genes and increase FA oxidation and energy expenditure. Overall, for the first time, we provide
in vivo
evidence of the role of AMPK in the phosphorylation and regulation of desnutrin/ATGL and HSL and thus adipose lipolysis.
Funder
HHS | National Institutes of Health
Publisher
American Society for Microbiology
Subject
Cell Biology,Molecular Biology
Cited by
225 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献