Author:
Hulanicka M D,Hallquist S G,Kredich N M,Mojica-A T
Abstract
A technique based on resistance to azaserine was used to isolate mutants lacking O-acetylserine sulfhydrylase B, one of two enzymes in Salmonella typhimurium capable of synthesizing L-cysteine from O-acetyl-L-serine and sulfide. The mutant locus responsible for this defect has been designated cysM, and genetic mapping suggests that cysM is very close to and perhaps contiguous with cysA. Strains lacking either O-acetylserine sulfhydrylase B or the second sulfhydrylase, O-acetylserine sulfhydrylase A (coded for by cysK), are cysteine prototrophs, but cysK cysM double mutants were found to require cysteine for growth. O-Acetylserine sulfhydrylase B was depressed by growth on a poor sulfur source, and depression was dependent upon both a functional cysB regulatory gene product and the internal inducer of the cysteine biosynthetic pathway, O-acetyl-L-serine. Furthermore, a cysBc strain, in which other cysteine biosynthetic enzymes cannot be fully repressed by growth on L-cystine, was found to be constitutive for O-acetylserine sulfhydrylase B as well. Thus O-acetylserine sulfhydrylase B is regulated by the same factors that control the expression of O-acetylserine sulfhydrylase A and other activities of the cysteine regulon. It is not clear why S. typhimurium has two enzymes whose physiological function appears to be to catalyze the same step of L-cysteine biosynthesis.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
61 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献