Silk gland-specific tRNA(Ala) genes interact more weakly than constitutive tRNA(Ala) genes with silkworm TFIIIB and polymerase III fractions

Author:

Sullivan H S1,Young L S1,White C N1,Sprague K U1

Affiliation:

1. Institute of Molecular Biology, University of Oregon, Eugene 97403.

Abstract

Constitutive and silk gland-specific tRNA(Ala) genes from silkworms have very different transcriptional properties in vitro. Typically, the constitutive type, which encodes tRNA(AlaC), directs transcription much more efficiently than does the silk gland-specific type, which encodes tRNA(AlaSG). We think that the inefficiency of the tRNA(AlaCG) gene underlies its capacity to be turned off in non-silk gland cells. An economical model is that the tRNA(AlaSG) promoter interacts poorly, relative to the tRNA(AlaC) promoter, with one or more components of the basal transcription machinery. As a consequence, the tRNA(AlaSG) gene directs the formation of fewer transcription complexes or of complexes with reduced cycling ability. Here we show that the difference in the number of active transcription complexes accounts for the difference in tRNA(AlaC) and tRNA(AlaSG) transcription rates. To determine whether a particular component of the silkworm transcription machinery is responsible for reduced complex formation on the tRNA(AlaSG) gene, we measured competition by templates for defined fractions of this machinery. We find that the tRNA(AlaSG) gene is greatly impaired, in comparison with the tRNA(AlaC) gene, in competition for either TFIIIB or RNA polymerase III. Competition for each of these fractions is also strongly influenced by the nature of the 5' flanking sequence, the promoter element responsible for the distinctive transcriptional properties of tRNA(AlaSG) and tRNA(AlaC) genes. These results suggest that differential interaction with TFIIIB or RNA polymerase III is a critical functional distinction between these genes.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3