A new orphan member of the nuclear hormone receptor superfamily that interacts with a subset of retinoic acid response elements

Author:

Baes M1,Gulick T1,Choi H S1,Martinoli M G1,Simha D1,Moore D D1

Affiliation:

1. Department of Molecular Biology, Massachusetts General Hospital, Boston 02114.

Abstract

We have identified and characterized a new orphan member of the nuclear hormone receptor superfamily, called MB67, which is predominantly expressed in liver. MB67 binds and transactivates the retinoic acid response elements that control expression of the retinoic acid receptor beta 2 and alcohol dehydrogenase 3 genes, both of which consist of a direct repeat hexamers related to the consensus AGGTCA, separated by 5 bp. MB67 binds these elements as a heterodimer with the 9-cis-retinoic acid receptor, RXR. However, MB67 does not bind or activate other retinoic acid response elements with alternative hexamer arrangements or any of several other wild-type and synthetic hormone response elements examined. The transactivation of retinoic acid response elements by MB67 is weaker than that conferred by the retinoic acid receptors but does not require the presence of all-trans retinoic acid, 9-cis-retinoic acid, or any exogenously added ligand. We propose that MB67 plays an important role in the complex network of proteins that govern response to retinoic acid and its metabolites.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Reference75 articles.

1. Minireview: the origin of nuclear receptor proteins: a single precursor distinct from other transcription factors;Amero S. A.;Mol. Endocrinol.,1992

2. Ausubel F. M. R. Brent R. E. Kingston D. D. Moore J. G. Seidman J. A. Smith and K. Struhl (ed.). 1993. Current protocols in molecular biology. Greene Publishing Associates New York.

3. .Baes M. Unpublished data.

4. Transgenic indicator mice for studying activated retinoic acid receptors during development;Balkan W.;Proc. Natl. Acad. Sci. USA,1992

5. Gene regulation by steroid hormones;Beato M.;Cell,1989

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3