Adaptation of Campylobacter jejuni NCTC11168 to High-Level Colonization of the Avian Gastrointestinal Tract

Author:

Jones Michael A.1,Marston Kerrie L.1,Woodall Claire A.2,Maskell Duncan J.2,Linton Dennis3,Karlyshev Andrey V.4,Dorrell Nick4,Wren Brendan W.4,Barrow Paul A.1

Affiliation:

1. Institute for Animal Health, Compton, Newbury Berkshire RG20 7NN

2. Centre for Veterinary Sciences, University of Cambridge, Cambridge CB3 0ES

3. School of Biological Sciences, University of Manchester, Manchester M13 9PT

4. London School of Hygiene and Tropical Medicine, London WC1A 7HT, United Kingdom

Abstract

ABSTRACT The genome sequence of the human pathogen Campylobacter jejuni NCTC11168 has been determined recently, but studies on colonization and persistence in chickens have been limited due to reports that this strain is a poor colonizer. Experimental colonization and persistence studies were carried out with C. jejuni NCTC11168 by using 2-week-old Light Sussex chickens possessing an acquired natural gut flora. After inoculation, NCTC11168 initially colonized the intestine poorly. However, after 5 weeks we observed adaptation to high-level colonization, which was maintained after in vitro passage. The adapted strain exhibited greatly increased motility. A second strain, C. jejuni 11168H, which had been selected under in vitro conditions for increased motility (A. V. Karlyshev, D. Linton, N. A. Gregson, and B. W. Wren, Microbiology 148: 473-480, 2002), also showed high-level intestinal colonization. The levels of colonization were equivalent to those of six other strains, assessed under the same conditions. There were four mutations in C. jejuni 11168H that reduced colonization; maf5 , flaA (motility and flagellation), and kpsM (capsule deficiency) eliminated colonization, whereas pglH (general glycosylation system deficient) reduced but did not eliminate colonization. This study showed that there was colonization of the avian intestinal tract by a Campylobacter strain having a known genome sequence, and it provides a model for colonization and persistence studies with specific mutations.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Cited by 157 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3