Affiliation:
1. Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City 66103.
Abstract
In Escherichia coli, the ftsZ gene is thought to be an essential cell division gene. Several dominant mutations that make lon mutant cells refractory to the cell division inhibitor SulA, sulB9, sulB25, and sfiB114, have been mapped to the ftsZ gene. DNA sequence analysis of these mutations and the sfiB103 mutation confirmed that all of these mutations mapped within the ftsZ gene and revealed that the two sulB mutations were identical and by selection for resistance to higher levels of SulA, contained a second mutation within the ftsZ gene. We therefore propose that these mutations be redesignated ftsZ(Rsa) for resistance to SulA. A procedure involving mutagenesis of ftsZ cloned on low-copy-number vectors was used to isolate three additional ftsZ(Rsa) mutations. DNA sequence analysis of these mutations revealed that they were distinct from the previously isolated mutations. One of these mutations, ftsZ3(Rsa), led to an altered FtsZ protein that could no longer support cell growth but still conferred the Rsa phenotype in the presence of ftsZ+. In addition to being resistant to SulA, all ftsZ(Rsa) mutations also conferred resistance to a LacZ-FtsZ hybrid protein (ZZ). One possibility is that FtsZ functions as a multimer and that FtsZ(Rsa) mutant proteins have an increased ability for multimerization, making them resistant to SulA and ZZ.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
104 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献