Affiliation:
1. Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill 27599-7290.
Abstract
The efficient export of the Escherichia coli maltose-binding protein (MBP) is known to be SecB dependent, whereas ribose-binding protein (RBP) export is SecB independent. When the MBP and RBP signal peptides were exchanged precisely at the signal peptidase processing sites, the resultant RBP-MBP and MBP-RBP hybrid proteins both were efficiently exported in SecB+ cells. However, only MBP-RBP was efficiently exported in SecB- cells; RBP-MBP exhibited a significant export defect, a finding that was consistent with previous proposals that SecB specifically interacts with the mature moiety of precursor MBP to promote export. The relatively slow, totally posttranslational export mode exhibited by certain mutant RBP and MBP-RBP species in SecB+ cells was not affected by the loss of SecB. In contrast, MBP and RBP-MBP species with similarly altered signal peptides were totally export defective in SecB- cells. Both export-defective MBP and RBP-MBP interfered with SecB-mediated protein export by depleting cells of functional SecB. In contrast, neither export-defective RBP nor MBP-RBP elicited such an interference effect. These and other data indicated that SecB is unable to interact with precursor RBP or that any interaction between these two proteins is considerably weaker than that of SecB with precursor MBP. In addition, no correlation could be established between a SecB requirement for export and PrlA-mediated suppression of signal peptide export defects. Finally, previous studies have established that wild-type MBP export can be accomplished cotranslationally, whereas wild-type RBP export is strictly a posttranslational process. In this study, cotranslational export was not detected for either MBP-RBP or RBP-MBP. This indicates that the export mode exhibited by a given precursor protein (cotranslational versus posttranslational) is determined by properties of both the signal peptide and the mature moiety.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
39 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献