Identification and Characterization of a Novel Fibronectin-Binding Protein on the Surface of Group A Streptococci

Author:

Rocha Claudia L.1,Fischetti Vincent A.1

Affiliation:

1. Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, New York 10021

Abstract

ABSTRACT Understanding the role surface proteins play in the interaction of group A streptococci with epithelial cells is an important step toward the development of new strategies to fight infections. Fibronectin-binding proteins in streptococci and staphylococci have been described as important mediators for adherence to eukaryotic cells. In the present study we describe a new Streptococcus pyogenes fibronectin-binding protein (PFBP). The gene encoding the PFBP protein ( pfbp ) was identified from an M12 strain genomic library. It encodes a protein of 127.4 kDa which contains the LPXTGX motif characteristic of cell wall-associated proteins in gram-positive organisms and is among the largest surface molecules described for group A streptococci. The pfbp gene is transcribed during cell growth and was present in several class I and II streptococcal strains tested. The deduced amino acid sequence of PFBP exhibits a variable N-terminal region and a conserved C-terminal region when compared to most fibronectin-binding proteins identified from other gram-positive bacteria. The N-terminal region presents a stretch of 105 amino acids with no homology with N-terminal regions of previously described fibronectin-binding molecules, while the C-terminal region contains three repeat domains that share significant similarity with the repeat regions of fibronectin-binding proteins from S. pyogenes , S. dysgalactiae , and S. equisimilis . The PFBP repeated region, when expressed on the surface of S. gordonii , a commensal organism, binds to soluble and immobilized fibronectin. This study also shows that, in addition to pfbp , a second gene homologous with that of protein F1 (which also codes for a fibronectin-binding protein) is transcribed during cell growth in the same S. pyogenes strain.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Cited by 88 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3