Affiliation:
1. Department of Medicine, Pulmonary and Critical Care Division,1
2. Department of Preventive Medicine, Division of Biostatistics and Epidemiology,2 and
3. Division of Infectious Diseases,3 University of Tennessee—Memphis, Memphis, Tennessee 38163
Abstract
ABSTRACT
Patients with unresolving acute respiratory distress syndrome (ARDS) have persistently elevated levels of proinflammatory cytokines in the lungs and circulation and increased rates of bacterial infections. Phagocytic cells hyperactivated with lipopolysaccharide (LPS), which induces high levels of proinflammatory cytokines in monocytic cells, are inefficient in killing ingested bacteria despite having intact phagocytic activity. On the other hand, phagocytic cells that are activated with an analogue of LPS that does not induce the expression of proinflammatory cytokines effectively ingest and kill bacteria. We hypothesized that in the presence of high concentrations of proinflammatory cytokines, bacteria may adapt and utilize cytokines to their growth advantage. To test our hypothesis, we primed a human monocytic cell line (U937) with escalating concentrations of the proinflammatory cytokines tumor necrosis factor alpha, interleukin-1β (IL-1β), and IL-6 and with LPS. These cells were then exposed to fresh isolates of three common nosocomial pathogens:
Staphylococcus aureus
,
Pseudomonas aeruginosa
, and an
Acinetobacter
sp. In human monocytes primed with lower concentrations of proinflammatory cytokines (10 to 250 pg) or LPS (1 and 10 ng), intracellular bacterial growth decreased. However, when human monocytes were primed with higher concentrations of proinflammatory cytokines (1 to 10 ng) or LPS (1 to 10 μg), intracellular growth of the tested bacteria increased significantly (
P
<0.0001). These results were reproduced with peripheral blood monocytes obtained from normal healthy volunteers. The specificity of the cytokine activity was demonstrated by neutralizing the cytokines with specific antibodies. Our findings provide a possible mechanism to explain the frequent development of bacterial infections in patients with an intense and protracted inflammatory response.
Publisher
American Society for Microbiology
Subject
Infectious Diseases,Immunology,Microbiology,Parasitology
Cited by
88 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献