Affiliation:
1. Sandia National Laboratories, Livermore
2. Department of Plant Biology, The Carnegie Institution of Washington, Stanford, California
3. Institut de Biologie Physico-Chimique, Paris, France
Abstract
ABSTRACT
Responses of photosynthetic organisms to sulfur starvation include (i) increasing the capacity of the cell for transporting and/or assimilating exogenous sulfate, (ii) restructuring cellular features to conserve sulfur resources, and (iii) modulating metabolic processes and rates of cell growth and division. We used microarray analyses to obtain a genome-level view of changes in mRNA abundances in the green alga
Chlamydomonas reinhardtii
during sulfur starvation. The work confirms and extends upon previous findings showing that sulfur deprivation elicits changes in levels of transcripts for proteins that help scavenge sulfate and economize on the use of sulfur resources. Changes in levels of transcripts encoding members of the light-harvesting polypeptide family, such as LhcSR2, suggest restructuring of the photosynthetic apparatus during sulfur deprivation. There are also significant changes in levels of transcripts encoding enzymes involved in metabolic processes (e.g., carbon metabolism), intracellular proteolysis, and the amelioration of oxidative damage; a marked and sustained increase in mRNAs for a putative vanadium chloroperoxidase and a peroxiredoxin may help prolong survival of
C. reinhardtii
during sulfur deprivation. Furthermore, many of the sulfur stress-regulated transcripts (encoding polypeptides associated with sulfate uptake and assimilation, oxidative stress, and photosynthetic function) are not properly regulated in the
sac1
mutant of
C. reinhardtii
, a strain that dies much more rapidly than parental cells during sulfur deprivation. Interestingly, sulfur stress elicits dramatic changes in levels of transcripts encoding putative chloroplast-localized chaperones in the
sac1
mutant but not in the parental strain. These results suggest various strategies used by photosynthetic organisms during acclimation to nutrient-limited growth.
Publisher
American Society for Microbiology
Subject
Molecular Biology,General Medicine,Microbiology
Cited by
176 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献