Natural immune response to the C-terminal 19-kilodalton domain of Plasmodium falciparum merozoite surface protein 1

Author:

Shi Y P1,Sayed U1,Qari S H1,Roberts J M1,Udhayakumar V1,Oloo A J1,Hawley W A1,Kaslow D C1,Nahlen B L1,Lal A A1

Affiliation:

1. Division of Parasitic Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30341, USA.

Abstract

We have characterized the natural immune responses to the 19-kDa domain of merozoite surface protein 1 in individuals from an area of western Kenya in which malaria is holoendemic. We used the three known natural variant forms of the yeast-expressed recombinant 19-kDa fragment that are referred to as the E-KNG, Q-KNG, and E-TSR antigens. T-cell proliferative responses in individuals older than 15 years and the profile of immunoglobulin G (IgG) antibody isotypes in individuals from 2 to 74 years old were determined. Positive proliferative responses to the Q-KNG antigen were observed for 54% of the individuals, and 37 and 35% of the individuals responded to the E-KNG and E-TSR constructs, respectively. Considerable heterogeneity in the T-cell proliferative responses to these three variant antigens was observed in different individuals, suggesting that the 19-kDa antigen may contain variant-specific T epitopes. Among responses of the different isotypes of the IgG antibody, IgG1 and IgG3 isotype responses were predominant, and the prevalence and levels of the responses increased with age. We also found that a higher level of IgG1 antibody response correlated with lower parasite density among young age groups, suggesting that IgG1 antibody response may play a role in protection against malaria. However, there was no correlation between the IgG3 antibody level and protection. Furthermore, we observed that although the natural antibodies cross-reacted with all three variant 19-kDa antigens, IgG3 antibodies in 12 plasma samples recognized only the E-KNG and Q-KNG constructs and not the E-TSR antigen. This result suggests that the fine specificity of IgG3 antibodies differentiates among variant-specific natural B-cell determinants in the second epidermal growth factor domain (KNG and TSR) of the antigen.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3