Saccharomyces cerevisiae a -Factor Mutants Reveal Residues Critical for Processing, Activity, and Export

Author:

Huyer Gregory1,Kistler Amy1,Nouvet Franklin J.1,George Carolyn M.1,Boyle Meredith L.1,Michaelis Susan1

Affiliation:

1. Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland

Abstract

ABSTRACT The Saccharomyces cerevisiae mating pheromone a -factor provides a paradigm for understanding the biogenesis of prenylated fungal pheromones. The biogenesis of a -factor involves multiple steps: (i) C-terminal CAAX modification (where C is cysteine, A is aliphatic, and X is any residue) which includes prenylation, proteolysis, and carboxymethylation (by Ram1p/Ram2p, Ste24p or Rce1p, and Ste14p, respectively); (ii) N-terminal processing, involving two sequential proteolytic cleavages (by Ste24p and Axl1p); and (iii) nonclassical export (by Ste6p). Once exported, mature a -factor interacts with the Ste3p receptor on MATα cells to stimulate mating. The a -factor biogenesis machinery is well defined, as is the CAAX motif that directs C-terminal modification; however, very little is known about the sequence determinants within a -factor required for N-terminal processing, activity, and export. Here we generated a large collection of a -factor mutants and identified residues critical for the N-terminal processing steps mediated by Ste24p and Axl1p. We also identified mutants that fail to support mating but do not affect biogenesis or export, suggesting a defective interaction with the Ste3p receptor. Mutants significantly impaired in export were also found, providing evidence that the Ste6p transporter recognizes sequence determinants as well as CAAX modifications. We also performed a phenotypic analysis of the entire set of isogenic a -factor biogenesis machinery mutants, which revealed information about the dependency of biogenesis steps upon one another, and demonstrated that export by Ste6p requires the completion of all processing events. Overall, this comprehensive analysis will provide a useful framework for the study of other fungal pheromones, as well as prenylated metazoan proteins involved in development and aging.

Publisher

American Society for Microbiology

Subject

Molecular Biology,General Medicine,Microbiology

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3