The Catabolite Repressor/Activator Cra Is a Bridge Connecting Carbon Metabolism and Host Colonization in the Plant Drought Resistance-Promoting Bacterium Pantoea alhagi LTYR-11Z

Author:

Zhang Lei12,Li Muhang1,Li Qiqi1,Chen Chaoqiong2,Qu Meng1,Li Mengyun1,Wang Yao12,Shen Xihui12

Affiliation:

1. State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China

2. Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China

Abstract

ABSTRACT Efficient root colonization is a prerequisite for application of plant growth-promoting (PGP) bacteria in improving health and yield of agricultural crops. We have recently identified an endophytic bacterium, Pantoea alhagi LTYR-11Z, with multiple PGP properties that effectively colonizes the root system of wheat and improves its growth and drought tolerance. To identify novel regulatory genes required for wheat colonization, we screened an LTYR-11Z transposon (Tn) insertion library and found cra to be a colonization-related gene. By using transcriptome (RNA-seq) analysis, we found that transcriptional levels of an eps operon, the ydiV gene encoding an anti-FlhD 4 C 2 factor, and the yedQ gene encoding an enzyme for synthesis of cyclic dimeric GMP (c-di-GMP) were significantly downregulated in the Δ cra mutant. Further studies demonstrated that Cra directly binds to the promoters of the eps operon, ydiV , and yedQ and activates their expression, thus inhibiting motility and promoting exopolysaccharide (EPS) production and biofilm formation. Consistent with previous findings that Cra plays a role in transcriptional regulation in response to carbon source availability, the activating effects of Cra were much more pronounced when LTYR-11Z was grown within a gluconeogenic environment than when it was grown within a glycolytic environment. We further demonstrate that the ability of LTYR-11Z to colonize wheat roots is modulated by the availability of carbon sources. Altogether, these results uncover a novel strategy utilized by LTYR-11Z to achieve host colonization in response to carbon nutrition in the environment, in which Cra bridges a connection between carbon metabolism and colonization capacity of LTYR-11Z. IMPORTANCE Rapid and appropriate response to environmental signals is crucial for bacteria to adapt to competitive environments and to establish interactions with their hosts. Efficient colonization and persistence within the host are controlled by various regulatory factors that respond to specific environmental cues. The most common is nutrient availability. In this work, we unraveled the pivotal role of Cra in regulation of colonization ability of Pantoea alhagi LTYR-11Z in response to carbon source availability. Moreover, we identified three novel members of the Cra regulon involved in EPS synthesis, regulation of flagellar biosynthesis, and synthesis of c-di-GMP and propose a working model to explain the Cra-mediated regulatory mechanism that links carbon metabolism to host colonization. This study elucidates the regulatory role of Cra in bacterial attachment and colonization of plants, which raises the possibility of extending our studies to other bacteria associated with plant and human health.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shaanxi Province

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3