Identification of hepatitis B virus polypeptides encoded by the entire pre-s open reading frame

Author:

Wong D T,Nath N,Sninsky J J

Abstract

The open reading frame (ORF) that encodes the 226-amino-acid coat protein (hepatitis B virus surface antigen [HBsAg]) of hepatitis B virus has the potential to encode a 400-amino-acid polypeptide. The entire ORF would direct the synthesis of a polypeptide whose C-terminal amino acids represent HBsAg with an additional 174 amino acids at the N terminus (pre-s). Recently, virus particles have been shown to contain a polypeptide that corresponds to HBsAg with an additional 55 amino acids at the N terminus encoded by the DNA sequence immediately upstream of the HBsAg gene. A novel ORF expression vector containing the TAC promoter, the first eight codons of the gene for beta-galactosidase, and the entire coding sequence for chloramphenicol acetyltransferase was used in bacteria to express determinants of the 174 amino acids predicted from the pre-s portion of the ORF. The resulting tribrid protein containing 108 amino acids encoded by pre-s was expressed as one of the major proteins of bacteria harboring the recombinant plasmid. Single-step purification of the tribrid fusion protein was achieved by fractionation on a chloramphenicol affinity resin. Polyclonal antiserum generated to the fusion protein was capable of detecting 42- and 46-kilodalton polypeptides from virus particles; both polypeptides were also shown to contain HBsAg determinants. The ability of the polyclonal antiserum to identify polypeptides with these characteristics from virus particles presents compelling evidence that the DNA sequence of the entire ORF is expressed as a contiguous polypeptide containing HBsAg. The presence of multiple promoters and primary translation products from this single ORF argues that the function and potential interaction of the encoded polypeptides play a crucial role in the life cycle of the virus. Furthermore, the procedure and vector described in this report can be applied to other systems to facilitate the generation of antibodies to defined determinants and should allow the characterization of the epitope specificity of existing antibodies.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3