Bile Salt 3α- and 12α-Hydroxysteroid Dehydrogenases from Eubacterium lentum and Related Organisms

Author:

Macdonald Ian A.1,Jellett Joanne F.1,Mahony David E.1,Holdeman Lillian V.2

Affiliation:

1. Departments of Medicine and Microbiology, Dalhousie University, Halifax, Nova Scotia, Canada

2. Anaerobe Laboratory, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24060

Abstract

Thirty-two strains of Eubacterium lentum and phenotypically similar anaerobic gram-positive bacilli were screened for intracellular bile salt 3α- and 12α-hydroxysteroid dehydrogenase (HSDHase) activities. These organisms were categorized into four groups: (A) those containing 12α-HSDHase only (10 strains), (B) those containing 3α- and 12α-HSDHase (13 strains), (C) those containing 3α-HSDHase only (2 strains), and (D) those devoid of any measurable HSDHase activity (7 strains). Of the respective four groups, 9/10, 13/13, 0/2, and 0/7 were like the neotype strain of E. lentum (ATCC 25559) in that they produced H 2 S in a triple sugar iron agar butt, reduced nitrate to nitrite, and weakly decomposed hydrogen peroxide. The other strains were variable for nitrate reduction and activity on hydrogen peroxide, but all the organisms in the first three categories (with one exception) were H 2 S producers (triple sugar iron agar butt) and all (with one exception) were designated E. lentum , whereas the organisms of category B were non-H 2 S producers (triple sugar iron agar butt). Five of these seven were not stimulated by arginine and are designated “phenotypically similar organisms.” Thin-layer chromatography of extracted spent bacterial medium of four representative strains from each group grown in the presence of cholate revealed the presence of (A) 12-oxo product, (B) 12-oxo and 3-oxo products, (C) 3-oxo product, and (D) the absence of any of these products. The 12α-HSDHase of category B organisms was unstable unless 10 −3 M dithioerythritol was added to the buffer. With the exception of 3 out of 32 strains, there was a positive correlation between the production of measurable amounts of 12α-HSDHase and H 2 S production. Growth curves and the effect of arginine on growth and the production of 3α- and 12α-HSDHase were examined in representative strains of categories A, B, and C. Both enzymes were shown to bind onto a nicotinamide adenine dinucleotide-Sepharose column and could be eluted by high-ionic-strength buffer, resulting in approximately 25-fold and 18-fold purification, respectively. Molecular weight estimations by Sephadex G-200 gave values of 205,000 and 125,000 for the 3α- and 12α-HSDHase, respectively. Purified 12α-HSDHase was investigated with respect to pH requirement, substrate specificity, and enzyme kinetics.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Cited by 66 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3