Data Mining Validation of Fluconazole Breakpoints Established by the European Committee on Antimicrobial Susceptibility Testing

Author:

Cuesta Isabel1,Bielza Concha2,Larrañaga Pedro2,Cuenca-Estrella Manuel1,Laguna Fernando3,Rodriguez-Pardo Dolors4,Almirante Benito4,Pahissa Albert4,Rodríguez-Tudela Juan L.1

Affiliation:

1. Servicio de Micologia, Centro Nacional de Microbiologia, Instituto de Salud Carlos III, Majadahonda, Madrid

2. Departamento de Inteligencia Artificial, Facultad de Informática, Universidad Politécnica, Madrid

3. Servicio de Medicina Interna, Hospital Carlos III, Madrid

4. Servicio de Enfermedades Infecciosas, Hospital Universitario Valle de Hebrón, Barcelona, Spain

Abstract

ABSTRACT European Committee on Antimicrobial Susceptibility Testing (EUCAST) breakpoints classify Candida strains with a fluconazole MIC ≤ 2 mg/liter as susceptible, those with a fluconazole MIC of 4 mg/liter as representing intermediate susceptibility, and those with a fluconazole MIC > 4 mg/liter as resistant. Machine learning models are supported by complex statistical analyses assessing whether the results have statistical relevance. The aim of this work was to use supervised classification algorithms to analyze the clinical data used to produce EUCAST fluconazole breakpoints. Five supervised classifiers (J48, Correlation and Regression Trees [CART], OneR, Naïve Bayes, and Simple Logistic) were used to analyze two cohorts of patients with oropharyngeal candidosis and candidemia. The target variable was the outcome of the infections, and the predictor variables consisted of values for the MIC or the proportion between the dose administered and the MIC of the isolate (dose/MIC). Statistical power was assessed by determining values for sensitivity and specificity, the false-positive rate, the area under the receiver operating characteristic (ROC) curve, and the Matthews correlation coefficient (MCC). CART obtained the best statistical power for a MIC > 4 mg/liter for detecting failures (sensitivity, 87%; false-positive rate, 8%; area under the ROC curve, 0.89; MCC index, 0.80). For dose/MIC determinations, the target was >75, with a sensitivity of 91%, a false-positive rate of 10%, an area under the ROC curve of 0.90, and an MCC index of 0.80. Other classifiers gave similar breakpoints with lower statistical power. EUCAST fluconazole breakpoints have been validated by means of machine learning methods. These computer tools must be incorporated in the process for developing breakpoints to avoid researcher bias, thus enhancing the statistical power of the model.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

Reference15 articles.

1. Epidemiology and Predictors of Mortality in Cases of Candida Bloodstream Infection: Results from Population-Based Surveillance, Barcelona, Spain, from 2002 to 2003

2. Classification and regression trees. 1984

3. Cestnik, B., I. Kononenko, and I. Bratko. 1987. ASSISTANT-86: a knowledge elicitation tool for sophisticated users, p. 31-45. In: Progress in Machine Learning. Sigma Press, Ammanford, United Kingdom.

4. Holte, R. C. 1993. Very simple classification rules perform well on most commonly used datasets. Mach. Learn.11:63-91.

5. Applied logistic regression. 2000

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3