Isoniazid Induces Its Own Resistance in Nonreplicating Mycobacterium tuberculosis

Author:

Siddiqi Salman1,Takhar Param1,Baldeviano Christian2,Glover William2,Zhang Ying2

Affiliation:

1. Becton Dickinson Diagnostic Systems, Sparks, Maryland 21152

2. Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205

Abstract

ABSTRACT Isoniazid (INH) resistance is most frequent among drug-resistant Mycobacterium tuberculosis clinical isolates. This study was conducted to investigate whether INH could induce its own resistance. During INH susceptibility testing in BACTEC 12B and MGIT 960 media, weekly subcultures were made from the drug-containing media into fresh medium without drug and susceptibility testing was performed. Rifampin (RIF) was used as a control drug. M. tuberculosis H37Rv and three clinical isolates were tested in this study. INH-resistant subcultures were analyzed for catalase activity, INH susceptibility, and mutations associated with INH resistance. With inoculum size (10 4 bacilli) smaller than a size that contains spontaneously INH-resistant mutants, INH was found to induce resistance to itself in INH-tolerant persisters but not to other drugs. The minimum time required for induction of INH resistance was 5 to 6 days. In contrast, RIF did not induce RIF resistance. Eight subcultures with INH-induced resistance were analyzed, and two had a MIC of 0.4 μg/ml INH and six had MICs of over 2 μg/ml INH. Four of the eight subcultures with INH-induced resistance had lost catalase activity, with three having katG mutations. Despite being a powerful frontline tuberculosis drug, INH has the potential drawback of inducing its own stable genetic resistance in INH-tolerant persisters. This finding helps to explain the higher frequency and prevalence of INH-resistant isolates than isolates with resistance to other drugs in patients.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

Reference22 articles.

1. Banerjee, A., E. Dubnau, A. Quemard, V. Balasubramanian, K. S. Um, T. Wilson, D. Collins, G. de Lisle, and W. R. Jacobs, Jr. 1994. inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science263:227-230.

2. Barnett, M., S. Bushby, and D. Mitchison. 1953. Isoniazid-resistant strains of tubercle bacilli. Their development and stability. Lanceti:314-320.

3. Canetti, G., W. Fox, A. Khomenko, H. T. Mahler, N. K. Menon, D. A. Mitchison, N. Rist, and N. A. Smelev. 1969. Advances in techniques of testing mycobacterial drug sensitivity, and the use of sensitivity tests in tuberculosis control programmes. Bull. W. H. O.41:21-43.

4. Cohn, D. L., F. Bustreo, and M. C. Raviglione. 1997. Drug-resistant tuberculosis: review of the worldwide situation and the WHO/IUATLD Global Surveillance Project. International Union Against Tuberculosis and Lung Disease. Clin. Infect. Dis.24(Suppl. 1):S121-S130.

5. Reference deleted.

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3