Role of the chymotrypsin-like membrane-associated proteinase from Treponema denticola ATCC 35405 in inactivation of bioactive peptides

Author:

Mäkinen P L1,Mäkinen K K1,Syed S A1

Affiliation:

1. Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor 48109, USA.

Abstract

The ability of washed whole cells of Treponema denticola ATCC 35405 to hydrolyze (inactivate) substance P, bradykinin, and angiotensin I was studied. Substance P was attacked primarily at the Phe-8-Gly-9 bond by a chymotrypsin-like proteinase (CTLP), at Pro-4-Gln-5 by an endo-acting prolyl oligopeptidase (POPase), and at Gln-5-Gln-6 by an endopeptidase (FALGPA-peptidase). Bradykinin was cleaved at Phe-5-Ser-6 by the FALGPA-peptidase and at Pro-7-Phe-8 by the POPase. Angiotensin I was rapidly converted to angiotensin II by the CTLP, and both angiotensin I and angiotensin II were further hydrolyzed at Pro-7-Phe-8 by the POPase. All these enzymes were assumed to be cell associated and were easily extracted with a mild (0.05 to 0.1%) Triton X-100 treatment. Because it was conceivable that the hydrolysis of substance P at the Phe-8-Gly-9 bond was catalyzed by a CTLP described earlier (V.-J. Uitto, D. Grenier, E. C. S. Chan, and B. C. McBride, Infect. Immun. 56:2717-2722, 1988), the enzyme was purified to homogeneity by means of conventional fast protein liquid chromatography procedures. For kinetic studies, Phe-8(4-nitro)-substance P (NSP) (absorption maximum at 309.2 nm, epsilon = 545 M-1 cm-1) was synthesized to replace substance P as a substrate in kinetic studies. In reversed-phase chromatography, both NSP and substance P gave identical results with both whole cells and the purified enzyme. The CTLP has a mass of 95 kDa, and its activity is suggested to be based on an active seryl residue, on an active imidazole group, and on an active carboxyl group but not on metal cations. The enzyme hydrolyzes N-succinyl-L-Ala-L-Ala-L-Pro-L-Phe-p-nitroaniline (SAAPFNA, a typical chymotrypsin substrate) at a high rate and several proteins, such as calf thymus histone, human plasma fibrinogen, milk caseins, and gelatin. Among the substrates tested, substance P showed the highest affinity (Km = 0.22 mM) for the purified enzyme. Depending on conditions, clinically applicable chlorhexidine levels (3.2 mmol/liter, or 0.2%) strongly activated (up to fourfold) the hydrolysis of SAAPFNA by whole cells and the purified CTLP. The hydrolysis of NSP by whole cells and purified CTLP was slightly inhibited by chlorhexidine. The results demonstrated the versatility and the effectiveness of the outer membrane of T. denticola in occasioning a rapid breakdown and inactivation of human bioactive peptides and other peptidolytic catalyses.(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3