Influence of growth temperature on glucose metabolism of a psychotrophic strain of Bacillus cereus

Author:

Chung B H,Cannon R Y,Smith R C

Abstract

The influence of temperature on glucose metabolism of a psychotrophic strain of Bacillus cereus was investigated. The pH of the growth medium and spore-forming frequencies of B. cereus varied when grown at 32, 20, or 7 C. Radiorespirometric analyses revealed that vegetative cells of B. cereus metabolized glucose by simultaneous operation of the Embden-Meyerhof-Parnas pathway and the pentose phosphate pathway. As the growth temperature decreased, glucose was metabolized with increased participation of the pentose phosphate pathway. The shift of cells grown at a higher temperature to a lower temperature increased the relative participation of the pentose phosphate pathway, whereas the shift of cells grown at low temperatures to a higher temperature had the opposite effect. Cells of late logarithmic phase grown at 20 and 7 C oxidized acetate by the tricarboxylic acid cycle reaction. However, cells grown at 32 C failed to oxidize acetate to CO2 to any appreciable extent. The extracellular products resulting from the metabolism of glucose decreased as the growth temperature was lowered. Organic acids were the major extracellular products of cultures grown at 32 and 20 C. Acetic acid, lactic acid, and pyruvic acid together accounted for 86.1 and 78.9% of extracellular radioactivity, respectively, at the two temperatures. The relative ratio of these three acids varied between the temperatures. Little or no acid accumulated at 7 C.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Reference33 articles.

1. Bacillus thuringiensis sporulation at suboptimal temperature;Aronson J. N.;J. Bacteriol.,1971

2. Fate of lactic acid in rumen ingesta;Bruno C. F.;J. Dairy Sci.,1962

3. Physiology of sporeforming bacteria associated with insects. I. Glucose catabolism in vegetative cells;Bulla L. A.;Can. J. Microbiol.,1970

4. Isolation and characterization of tricarboxylic acid cycle mutants of Bacillus subtilis;Carls R. A.;J. Bacteriol.,1971

5. The fermentation of isotopic carbon compounds by Bacillus polymyxa and Bacillus maceran;DeMey L.;Meded. Fac. Landbouwwet. Rjjksuniv. Gent,1970

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3