Affiliation:
1. Division of Viral Products, CBER, U.S. Food and Drug Administration, Bethesda, Maryland 20892
Abstract
ABSTRACT
The preparation of high-yield prepandemic influenza virus H5N1 strains has presented a challenge to both researchers and vaccine manufacturers. The reasons for the relatively low yield of the H5N1 strains are not fully understood, but it might be partially dependent on the interactions between the hemagglutinin (HA) or neuraminidase (NA) surface glycoprotein and other influenza virus proteins. In this study, we have constructed chimeras between the A/Puerto Rico/8/34 (PR8) NA gene and the A/Vietnam/1203/2004 (VN1203) NA gene that have resulted in an increase in the virus yield of the reassortant viruses without a significant loss of NA activity. By combining the amino terminus of NA from the PR8 strain with the carboxy terminus of NA from VN1203, the surface epitopes unique to the H5N1 VN1203 NA glycoprotein are maintained. This reassortant virus had a higher titer and total protein yield in eggs, grew to a higher titer, produced large plaques on MDCK cells, and retained NA activity. This work describes a novel recombinant technique designed to increase the yields of vaccine candidates for the production of pandemic influenza virus vaccines. The relationship between the infectivity and protein yield of the reassortants also is discussed.
Publisher
American Society for Microbiology
Subject
Virology,Insect Science,Immunology,Microbiology