Rearrangements of Rotavirus Genomic Segment 11 Are Generated during Acute Infection of Immunocompetent Children and Do Not Occur at Random

Author:

Schnepf Nathalie12,Deback Claire1,Dehee Axelle12,Gault Elyanne1,Parez Nathalie1,Garbarg-Chenon Antoine12

Affiliation:

1. Université Pierre et Marie Curie-Paris 6, EA 3500, Paris, F-75012 France

2. AP-HP, hôpital Armand Trousseau, Service de Virologie, Paris, F-75012 France

Abstract

ABSTRACT Group A rotaviruses are the main cause of viral gastroenteritis in infants. The viral genome consists of 11 double-stranded RNA (dsRNA) segments. Dysfunction of the viral RNA polymerase can lead to gene rearrangements, which most often consist of partial sequence duplication of a dsRNA segment. Gene rearrangements have been detected in vivo during chronic infection in immunodeficient children or in vitro during passages at a high multiplicity of infection in cell culture, suggesting that these replication conditions lead to selective advantages favoring the recovery of viruses with rearranged genes. During acute rotavirus infection, the replication level is high, but the occurrence of rearrangement events has never been reported. By the use of a reverse transcription-PCR assay specifically designed to detect small numbers of copies of rearranged forms of segment 11 in a high background of its standard counterpart, we detected 12 rearrangement events among 161 cases (7.5%) of acute rotavirus infection in immunocompetent children. Strikingly, in all but one case, rearrangement took place at the same location within the short direct repeat AUGU sequence. For the unique case with a different rearrangement pattern, the rearrangement occurred within the direct repeat ACAAGUC that was specific for this isolate. In conclusion, we report the occurrence of segment 11 rearrangements during acute rotavirus infection in immunocompetent children. We show that under such conditions of infection, the viral RNA polymerase generates rearrangements which occur not at random but within direct repeats which might constitute hot spots for RNA recombination.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3