Affiliation:
1. Departments of Biochemistry and Microbiology, University of Chicago, Chicago, Illinois 60637
Abstract
Of six deoxyribonucleic acid repair mutants of
Bacillus subtilis
assayed for deoxyribonucleic acid polymerase, only the methyl methanesulfonate-sensitive and ultraviolet light-sensitive mutant JB1-49(59) has impaired polymerase activity. Extracts prepared by sonic treatment or gentle lysis had about 10% of the wild-type activity with poly d(A–T), an alternating copolymer of deoxyadenylate and deoxythymidylate, used as template. The sensitivity to methyl methanesulfonate and ultraviolet light and the low level of polymerase activity transformed and reverted together, indicating that the two characteristics are a pleiotropic manifestation of a single mutation. Mixed extract and kinetic experiments mitigated against an altered nuclease activity as the enzymatic consequence of the mutation. Also, the mutant and wild type activities were stimulated equally by
Escherichia coli
exonuclease III. The residual activity in the mutant showed several differences from the wild-type activity: it purified differently, was more sensitive to sulfhydryl reagents, and displayed a different template specificity. We tentatively conclude that either the mutation in JB1-49(59) has introduced a qualitative as well as a quantitative change in the polymerase or the wild type contains two distinct polymerases, one of which is missing in the mutant.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
56 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献