Use of rpoB Gene Analysis for Detection and Identification of Bartonella Species

Author:

Renesto Patricia1,Gouvernet Joanny2,Drancourt Michel1,Roux Veronique1,Raoult Didier1

Affiliation:

1. Unité des Rickettsies, CNRS UPRES-A 6020, Faculté de Médecine, Université de la Méditerranée,1 and

2. Service de l'Information Médicale, Hôpital de la Timone,2 13385 Marseille, France

Abstract

ABSTRACT Identification of Bartonella species is of increasing importance as the number of infections in which these bacteria are involved increases. To date, these gram-negative bacilli have been identified by various serological, biochemical, and genotypic methods. However, the development of alternative tools is required, principally to circumvent a major risk of contamination during sample manipulation. The aim of our study was to investigate the possible identification of various Bartonella species by comparison of RNA polymerase beta-subunit gene ( rpoB ) sequences. This approach has previously been shown to be useful for the identification of members of the family Enterobacteriaceae (C. M. Mollet, M. Drancourt, and D. Raoult, Mol. Microbiol. 26:1005–1011, 1997). Following PCR amplification with specific oligonucleotides, a 825-bp region of the rpoB gene was sequenced from 13 distinct Bartonella strains. Analysis of these sequences allowed selection of three restriction enzymes ( Apo I, Alu I, and Afl III) useful for discerning the different strains by PCR-restriction fragment length polymorphism (PCR-RFLP) analysis. To confirm the potential value of such an approach for identification of Bartonella , the rpoB PCR was then applied to 94 clinical samples, and the results obtained were identical to those obtained by our reference PCR method. Twenty-four isolates were also adequately identified by PCR-RFLP analysis. In all cases, our results were in accordance with those of the reference method. Moreover, conserved regions of DNA were chosen as suitable primer targets for PCR amplification of a 439-bp fragment which can be easily sequenced.

Publisher

American Society for Microbiology

Subject

Microbiology (medical)

Cited by 214 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3