High levels of human gamma-globin gene expression in adult mice carrying a transgene of deletion-type hereditary persistence of fetal hemoglobin

Author:

Arcasoy M O1,Romana M1,Fabry M E1,Skarpidi E1,Nagel R L1,Forget B G1

Affiliation:

1. Department of Medicine, Yale University School of Medicine, New Haven, Connecticut 06510, USA.

Abstract

Persistent expression of the gamma-globin genes in adults with deletion types of hereditary persistence of fetal hemoglobin (HPFH) is thought to be mediated by enhancer-like effects of DNA sequences at the 3' breakpoints of the deletions. A transgenic mouse model of deletion-type HPFH was generated by using a DNA fragment containing both human gamma-globin genes and HPFH-2 breakpoint DNA sequences linked to the core sequences of the locus control region (LCR) of the human beta-globin gene cluster. Analysis of gamma-globin expression in six HPFH transgenic lines demonstrated persistence of gamma-globin mRNA and peptides in erythrocytes of adult HPFH transgenic mice. Analysis of the hemoglobin phenotype of adult HPFH transgenic animals by isoelectric focusing showed the presence of hybrid mouse alpha2-human gamma2 tetramers as well as human gamma4 homotetramers (hemoglobin Bart's). In contrast, correct developmental regulation of the gamma-globin genes with essentially absent gamma-globin gene expression in adult erythroid cells was observed in two control non-HPFH transgenic lines, consistent with autonomous silencing of normal human gamma-globin expression in adult transgenic mice. Interestingly, marked preferential overexpression of the LCR-distal (A)gamma-globin gene but not of the LCR-proximal (G)gamma-globin gene was observed at all developmental stages in erythroid cells of HPFH-2 transgenic mice. These findings were also associated with the formation of a DNase I-hypersensitive site in the HPFH-2 breakpoint DNA of transgenic murine erythroid cells, as occurs in normal human erythroid cells in vivo. These results indicate that breakpoint DNA sequences in deletion-type HPFH-2 can modify the developmentally regulated expression of the gamma-globin genes.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3