The adenovirus E1A-regulated transcription factor E4F is generated from the human homolog of nuclear factor phiAP3

Author:

Fernandes E R1,Rooney R J1

Affiliation:

1. Department of Biochemistry, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA.

Abstract

A 50-kDa cellular factor, E4F, has been implicated in mediating trans activation of the adenovirus E4 gene by the 289R E1A(13S) protein. Previous experiments demonstrated an E1A-dependent increase in E4F DNA binding activity, dependent on phosphorylation, that correlated with the activation of E4 transcription. Using expression screening, we isolated a cDNA clone encoding the E4F protein, as judged by DNA binding characteristics, transcriptional activation, and immunological criteria. The E4F-1 cDNA encodes a 783-amino-acid polypeptide that has 86% sequence identity with the murine nuclear factor phiAP3, a GLI-krüppel-related protein. E4F DNA binding activity is encoded within an amino-terminal region of E4F-1 that contains a zinc finger domain and, as with endogenous E4F, is phosphatase sensitive. We found that E4F was generated from the full-length E4F-1-encoded protein as a 50-kDa amino-terminal fragment. Moreover, E1A(13S) expression induced the phosphorylation of both forms of E4F-1 but differentially regulated their DNA binding activities, stimulating the 50-kDa fragment while reducing the activity of the full-length protein. In transient-transfection assays, the E4F-1 amino-terminal fragment stimulated the adenovirus E4 promoter in the presence of E1A(13S), whereas the full-length protein repressed the promoter in the absence, but not the presence, of E1A. The results indicate that the 50-kDa polypeptide responsible for E4F DNA binding activity is a fragment generated from the human homolog of phiAP3 and that the two forms of the E4F-1 protein are differentially regulated by E1A through phosphorylation.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3