Position-dependent transcriptional regulation of the murine dihydrofolate reductase promoter by the E2F transactivation domain

Author:

Fry C J1,Slansky J E1,Farnham P J1

Affiliation:

1. McArdle Laboratory for Cancer Research, University of Wisconsin Medical School, Madison 53706, USA.

Abstract

Activity of the dihydrofolate reductase (dhfr) promoter increases at the G1-S-phase boundary of the cell cycle. Mutations that abolish protein binding to an E2F element in the dhfr promoter also abolish the G1-S-phase increase in dhfr transcription, indicating that transcriptional regulation is mediated by the E2F family of proteins. To investigate the mechanism by which E2F regulates dhfr transcription, we moved the E2F element upstream and downstream of its natural position in the promoter. We found that the E2F element confers growth regulation to the dhfr promoter only when it is proximal to the transcription start site. Using a heterologous E2F element, we showed that position-dependent regulation is a property that is promoter specific, not E2F element specific. We demonstrated that E2F-mediated growth regulation of dhfr transcription requires activation of the dhfr promoter in S phase and that the C-terminal activation domains of E2F1, E2F4, and E2F5, when fused to the Gal4 DNA binding domain, are sufficient to specify position-dependent activation. To further investigate the role of activation in dhfr regulation, we tested other transactivation domains for their ability to activate the dhfr promoter. We found that the N-terminal transactivation domain of VP16 cannot activate the dhfr promoter. We propose that, unlike other E2F-regulated promoters, robust transcription from the dhfr promoter requires an E2F transactivation domain close to the transcription start site.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3