Tyrosine phosphorylation sites at amino acids 239 and 240 of Shc are involved in epidermal growth factor-induced mitogenic signaling that is distinct from Ras/mitogen-activated protein kinase activation

Author:

Gotoh N1,Toyoda M1,Shibuya M1

Affiliation:

1. Department of Genetics, Institute of Medical Science, University of Tokyo, Japan.

Abstract

Epidermal growth factor (EGF) induces tyrosine phosphorylation of the Shc adapter protein, which plays an important role in EGF-stimulated mitogenesis. Shc stimulates Ras/mitogen-activated protein kinase (MAPK) through forming a complex with Grb2 at the phosphorylated tyrosine (Y) residue 317. In this study, we identified novel phosphorylation sites of Shc, at Y239 and Y240. To define the Shc pathway further, we used NIH 3T3 cells expressing the previously characterized mutant EGF receptor (EGF-R) which lacks all known autophosphorylation sites but retains EGF-stimulated mitogenesis with selective phosphorylation of Shc. We constructed wild-type (WT) or mutant Shc cDNAs in which Y317 or/and Y239 and Y240 are replaced with phenylalanine (F) and introduced them into NIH 3T3 cells expressing WT or mutant EGF-R. In the WT EGF-R-expressing cells, the Y239/240/317F Shc, but not Y317F or Y239/240F Shc, decreased EGF-stimulated cell growth. In the mutant EGF-R-expressing cells, Y317F Shc or Y239/240F Shc decreased EGF-stimulated cell growth significantly, though Y317F was a little more potent than Y239/240F. Although cells expressing the Y317F Shc hardly activated MAPK in response to EGF, cells expressing the Y239/240F Shc fully activated MAPK. In contrast, Y239/240F Shc, but not Y317F Shc, reduced the EGF-induced c-myc message. These results suggest that Shc activates two distinct signaling pathways, Y317 to Ras/MAPK and Y239 and Y240 to another pathway including Myc, and that both are involved in EGF-induced mitogenic signaling.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Reference61 articles.

1. Myc but not Fos rescue of PDGF signaling block caused by kinase-inactive Src;Barone M. V.;Nature,1995

2. Role of Shc in the activation of Ras in response to epidermal growth factor and nerve growth factor;Basu T.;Oncogene,1994

3. Hierarchy of binding sites for Grb2 and Shc on the epidermal growth factor receptor;Batzer A. G.;Mol. Cell. Biol.,1994

4. The phosphotyrosine interaction domain of Shc binds an LXNPXY motif on the epidermal growth factor receptor;Bazter A. G.;Mol. Cell. Biol.,1995

5. Phosphopeptide mapping and phosphoamino acid analysis by two-dimensional separation on thin-layer cellulose plates;Boyle W. J.;Methods Enzymol.,1991

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3