Functional subdomains of STAT2 required for preassociation with the alpha interferon receptor and for signaling

Author:

Li X1,Leung S1,Kerr I M1,Stark G R1

Affiliation:

1. Department of Molecular Biology, Research Institute, Cleveland Clinic Foundation, Ohio 44195, USA.

Abstract

Two members of the STAT signal transducer and activator of transcription family, STAT1 and STAT2, are rapidly phosphorylated on tyrosine in response to alpha interferon (IFN-alpha). Previous work showed that in the mutant human cell line U6A, which lacks STAT2 and is completely defective in IFN-alpha signaling, the phosphorylation of STAT1 is very weak, revealing that activation of STAT1 depends on STAT2. We now find that STAT2 binds to the cytoplasmic domain of the IFNAR2c (also known as IFNAR2-2) subunit of the IFN-alpha receptor in extracts of untreated cells. STAT1 also binds but only when STAT2 is present. The activities of chimeric STAT2-STAT1 proteins were assayed in U6A cells to define regions required for IFN-alpha signaling. Previous work showed that a point mutation in the Src homology 2 (SH2) domain prevents STAT2 from binding to phosphotyrosine 466 of the IFNAR1 subunit of the activated receptor. However, we now find that the entire SH2 domain of STAT2 can be replaced by that of STAT1 without loss of function, revealing that other regions of STAT2 are required for its specific interaction with the receptor. A chimeric protein, in which the N-terminal third of STAT2 has replaced the corresponding region of STAT1, did preassociate with the IFNAR2c subunit of the receptor, became phosphorylated when IFN-alpha was added, and supported the phosphorylation of endogenous STAT1. These results are consistent with a model in which STAT2 and STAT1 are prebound to the IFNAR2c subunit of the resting receptor. Upon activation, the IFNAR1 subunit is phosphorylated on Tyr-466, allowing the SH2 domain of STAT2 to bind to it; this is followed by the sequential phosphorylation of STAT2 and STAT1.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 173 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3