Fluorescence-Based Bacterial Overlay Method for Simultaneous In Situ Quantification of Surface-Attached Bacteria

Author:

Müller Rainer1,Gröger Gerhard2,Hiller Karl-Anton3,Schmalz Gottfried3,Ruhl Stefan3

Affiliation:

1. Institute of Physical and Theoretical Chemistry, University of Regensburg, Regensburg, Germany

2. Department of Prosthodontics

3. Department of Operative Dentistry and Periodontology, Dental School, University of Regensburg, Regensburg, Germany

Abstract

ABSTRACT For quantification of bacterial adherence to biomaterial surfaces or to other surfaces prone to biofouling, there is a need for methods that allow a comparative analysis of small material specimens. A new method for quantification of surface-attached biotinylated bacteria was established by in situ detection with fluorescence-labeled avidin-D. This method was evaluated utilizing a silicon wafer model system to monitor the influences of surface wettability and roughness on bacterial adhesion. Furthermore, the effects of protein preadsorption from serum, saliva, human serum albumin, and fibronectin were investigated. Streptococcus gordonii , Streptococcus mitis , and Staphylococcus aureus were chosen as model organisms because of their differing adhesion properties and their clinical relevance. To verify the results obtained by this new technique, scanning electron microscopy and agar replica plating were employed. Oxidized and poly(ethylene glycol)-modified silicon wafers were found to be more resistant to bacterial adhesion than wafers coated with hydrocarbon and fluorocarbon moieties. Roughening of the chemically modified surfaces resulted in an overall increase in bacterial attachment. Preadsorption of proteins affected bacterial adherence but did not fully abolish the influence of the original surface chemistry. However, in certain instances, mostly with saliva or serum, masking of the underlying surface chemistry became evident. The new bacterial overlay method allowed a reliable quantification of surface-attached bacteria and could hence be employed for measuring bacterial adherence on material specimens in a variety of applications.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3