SARS-CoV-2 Causes Severe Epithelial Inflammation and Barrier Dysfunction

Author:

Deinhardt-Emmer StefanieORCID,Böttcher Sarah,Häring Clio,Giebeler Liane,Henke Andreas,Zell Roland,Jungwirth Johannes,Jordan Paul M.,Werz Oliver,Hornung Franziska,Brandt Christian,Marquet Mike,Mosig Alexander S.,Pletz Mathias W.,Schacke Michael,Rödel Jürgen,Heller Regine,Nietzsche Sandor,Löffler Bettina,Ehrhardt Christina

Abstract

ABSTRACT Infections with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can be asymptomatic, but they can also be accompanied by a variety of symptoms that result in mild to severe coronavirus disease-19 (COVID-19) and are sometimes associated with systemic symptoms. Although the viral infection originates in the respiratory system, it is unclear how the virus can overcome the alveolar barrier, which is observed in severe COVID-19 disease courses. To elucidate the viral effects on the barrier integrity and immune reactions, we used mono-cell culture systems and a complex human chip model composed of epithelial, endothelial, and mononuclear cells. Our data show that SARS-CoV-2 efficiently infected epithelial cells with high viral loads and inflammatory response, including interferon expression. In contrast, the adjacent endothelial layer was neither infected nor did it show productive virus replication or interferon release. With prolonged infection, both cell types were damaged, and the barrier function deteriorated, allowing the viral particles to overbear. In our study, we demonstrate that although SARS-CoV-2 is dependent on the epithelium for efficient replication, the neighboring endothelial cells are affected, e.g., by the epithelial cytokines or components induced during infection, which further results in damage of the epithelial/endothelial barrier function and viral dissemination. IMPORTANCE SARS-CoV-2 challenges health care systems and societies worldwide in unprecedented ways. Although numerous new studies have been conducted, research to better understand the molecular pathogen-host interactions is urgently needed. For this, experimental models have to be developed and adapted. In the present study we used mono-cell culture systems, and we established a complex chip model, where epithelial and endothelial cells are cultured in close proximity. We demonstrate that epithelial cells can be infected with SARS-CoV-2, while the endothelium did not show any infection signs. Since SARS-CoV-2 is able to establish viremia, the link to thromboembolic events in severe COVID-19 courses is evident. However, whether the endothelial layer is damaged by the viral pathogens or whether other endothelial-independent homeostatic factors are induced by the virus is essential for understanding the disease development. Therefore, our study is important, as it demonstrates that the endothelial layer could not be infected by SARS-CoV-2 in our in vitro experiments, but we were able to show the destruction of the epithelial-endothelial barrier in our chip model. From our experiments, we can assume that virus-induced host factors disturbed the epithelial-endothelial barrier function and thereby promote viral spread.

Funder

IZKF

SFB

Bundesministerium für Bildung und Forschung

Carl Zeiss Meditec AG

Deutsche Forschungsgemeinschaft

UKJ | Center for Sepsis Control and Care

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3