Analysis of Herpes Simplex Virus Type 1 DNA Packaging Signal Mutations in the Context of the Viral Genome

Author:

Tong Lily1,Stow Nigel D.1

Affiliation:

1. MRC Virology Unit, Institute of Virology, University of Glasgow, Church Street, Glasgow G11 5JR, United Kingdom

Abstract

ABSTRACT The minimal signal required for the cleavage and packaging of replicated concatemeric herpes simplex virus type 1 (HSV-1) DNA corresponds to an approximately 200-bp fragment, Uc-DR1-Ub, spanning the junction of the genomic L and S segments. Uc and Ub occupy positions adjacent to the L and S termini and contain motifs ( pac 2 and pac 1, respectively) that are conserved near the ends of other herpesvirus genomes. We have used homologous Red/ET recombination in Escherichia coli to introduce wild-type and specifically mutated Uc-DR1-Ub fragments into an ectopic site of a cloned HSV-1 genome from which the resident packaging signals had been previously deleted. The resulting constructs were transfected into mammalian cells, and their abilities to replicate and become encapsidated, generate Uc- and Ub-containing terminal fragments, and give rise to progeny virus were assessed. In general, the results obtained agree well with previous observations made using amplicons and confirm roles for the pac 2 T element in the initiation of DNA packaging and for the GC-rich motifs flanking the pac 1 T element in termination. In contrast to a previous report, the sequence of the DR1 element was also crucial for DNA packaging. Following repair of the resident packaging signals in mammalian cells, recombination occurred at high frequency in progeny virus between the repaired sequences and mutated Uc-DR1-Ub inserts. This restored the ability of mutated Uc-DR1-Ub inserts to generate terminal fragments, although these were frequently larger than expected from simple repair of the original lesion.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Reference35 articles.

1. Adelman, K., B. Salmon, and J. D. Baines. 2001. Herpes simplex virus DNA packaging sequences adopt novel structures that are specifically recognized by a component of the cleavage and packaging machinery. Proc. Natl. Acad. Sci. USA98:3086-3091.

2. Baines, J. D., and S. K. Weller. 2005. Cleavage and packaging of herpes simplex virus 1 DNA, p. 135-150. In C. E. Catalano (ed.), Viral genome packaging machines: genetics, structure and mechanism. Kluwer Academic/Plenum Publishers, New York, NY.

3. Broll, H., H.-J. Buhk, W. Zimmermann, and M. Goltz. 1999. Structure and function of the prDNA and genomic termini of the γ2-herpesvirus bovine herpesvirus type 4. J. Gen. Virol.80:979-986.

4. Brown, J. C., M. A. McVoy, and F. L. Homa. 2002. Packaging DNA into herpesvirus capsids, p. 111-153. In A. Holzenburg and E. Bogner (ed.), Structure-function relationships of human pathogenic viruses. Kluwer Academic/Plenum Publishers, New York, NY.

5. Chou, J., and B. Roizman. 1985. Isomerization of herpes simplex virus 1 genome: identification of the cis-acting and recombination sites within the domain of the a sequence. Cell41:803-811.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3