Premature termination of in vivo transcription of a gene encoding a branched-chain amino acid transport protein in Escherichia coli

Author:

Williamson R M1,Oxender D L1

Affiliation:

1. Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor 48109-0606.

Abstract

Previous studies have suggested that control of expression of genes of the LIV-I permease system for the high-affinity transport of branched-chain amino acids in Escherichia coli involves modulation in the frequency of mRNA elongation. Mutation of the Rho transcription termination factor and shortages of charged leucyl-tRNA have been shown to alter LIV-I transport activity. Rho-dependent transcription termination regulated by shortages of charged leucyl-tRNA at sites preceding structural genes has been proposed to account for their role in regulation of LIV-I transport. Transcription of the livJ-binding protein gene, encoding one of the periplasmic components of the LIV-I system, was analyzed in vivo with strains which lack repression of the LIV-I genes and harbor a temperature-sensitive allele for either leucyl-tRNA synthetase or Rho factor. Analysis of mRNA synthesis by DNA-RNA hybridization in the various mutant strains indicated that both shortages of leucyl-tRNA caused by inactivation of the temperature-sensitive leucyl-tRNA synthetase and inactivation of the Rho factor were associated with increased synthesis of livJ mRNA. Nuclease protection and gel electrophoresis studies detected prematurely terminated transcripts corresponding in size to the leader region of livJ mRNA. Accumulations of these short transcripts were suppressed in strains harboring temperature-sensitive alleles for either leucyl-tRNA synthetase or Rho factor. These results provide support for the hypothesis that expression of livJ involves Rho-dependent transcription termination in which antitermination is associated with the intracellular availability of aminoacyl leucyl-tRNA.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3