Requirement of Heat Shock Protein 90 for Human Hepatitis B Virus Reverse Transcriptase Function

Author:

Hu Jianming1,Flores Dafna1,Toft David2,Wang Xingtai1,Nguyen David1

Affiliation:

1. Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts

2. Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota

Abstract

ABSTRACT The initiation of reverse transcription and nucleocapsid assembly in hepatitis B virus (HBV) depends on the specific recognition of an RNA signal (the packaging signal, ε) on the pregenomic RNA (pgRNA) by the viral reverse transcriptase (RT). RT-ε interaction in the duck hepatitis B virus (DHBV) was recently shown to require the molecular chaperone complex, the heat shock protein 90 (Hsp90). However, the requirement for RT-ε interaction in the human HBV has remained unknown due to the inability to obtain a purified RT protein active in specific ε binding. We now report that Hsp90 is also required for HBV RT-ε interaction. Inhibition of Hsp90 led to diminished HBV pgRNA packaging into nucleocapsids in cells, which depends on RT-ε interaction. Furthermore, using truncated HBV RT proteins purified from bacteria and five purified Hsp90 chaperone factors, we have developed an in vitro RT-ε binding assay. Our results demonstrate that Hsp90, in a dynamic process that was dependent on ATP hydrolysis, facilitated RT-ε interaction in HBV, as in DHBV. Specific ε binding required sequences from both the amino-terminal terminal protein and the carboxy-terminal RT domain. Only the cognate HBV ε, but not the DHBV ε, could bind the HBV RT proteins. Furthermore, the internal bulge, but not the apical loop, of ε was required for RT binding. The establishment of a defined in vitro reconstitution system has now paved the way for future biochemical and structural studies to elucidate the mechanisms of RT-ε interaction and chaperone activation.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 168 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3