A DNAβ Associated with Tomato Yellow Leaf Curl China Virus Is Required for Symptom Induction

Author:

Cui Xiaofeng1,Tao Xiaorong1,Xie Yan1,Fauquet Claude M.2,Zhou Xueping1

Affiliation:

1. Institute of Biotechnology, Zhejiang University, Hangzhou, People's Republic of China

2. International Laboratory for Tropical Agricultural Biotechnology, Danforth Plant Science Center, St. Louis, Missouri

Abstract

ABSTRACT We report here that all 25 isolates of Tomato yellow leaf curl China virus (TYLCCNV) collected from tobacco, tomato, or Siegesbeckia orientalis plants in different regions of Yunnan Province, China, were associated with DNAβ molecules. To investigate the biological role of DNAβ, full-length infectious clones of viral DNA and DNAβ of TYLCCNV isolate Y10 (TYLCCNV-Y10) were agroinoculated into Nicotiana benthamiana , Nicotiana glutinosa , Nicotiana. tabacum Samsun (NN or nn), tomato, and petunia plants. We found that TYLCCNV-Y10 alone could systemically infect these plants, but no symptoms were induced. TYLCCNV-Y10 DNAβ was required, in addition to TYLCCNV-Y10, for induction of leaf curl disease in these hosts. Similar to TYLCCNV-Y10, DNAβ of TYLCCNV isolate Y64 was also found to be required for induction of typical leaf curl diseases in the hosts tested. When the βC1 gene of TYLCCNV-Y10 DNAβ was mutated, the mutants failed to induce leaf curl symptoms in N. benthamiana when coinoculated with TYLCCNV-Y10. However, Southern blot hybridization analyses showed that the mutated DNAβ molecules were replicated. When N. benthamiana and N. tabacum plants were transformed with a construct containing the βC1 gene under the control of the Cauliflower mosaic virus 35S promoter, many transgenic plants developed leaf curl symptoms similar to those caused by a virus, the severity of which paralleled the level of βC1 transcripts, while transgenic plants transformed with the βC1 gene containing a stop codon after the start codon remained symptomless. Thus, expression of a βC1 gene is adequate for induction of symptoms of viral infection in the absence of virus.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3