Neutrality of the Canonical NF-κB-Dependent Pathway for Human and Murine Cytomegalovirus Transcription and Replication In Vitro

Author:

Benedict Chris A.1,Angulo Ana2,Patterson Ginelle1,Ha Sukwon1,Huang Huang3,Messerle Martin4,Ware Carl F.1,Ghazal Peter35

Affiliation:

1. La Jolla Institute of Allergy and Immunology, San Diego, California 92007

2. Institut d'Investigacions Biomediques August Pi i Sunyer, 08036 Barcelona, Spain

3. The Scripps Research Institute, La Jolla, California 92037

4. Virus Cell Interaction Group, Medical Faculty, University of Halle, 06120 Halle, Germany

5. Scottish Centre for Genomic Technology and Informatics, University of Edinburgh Medical School, Edinburgh EH16 4SB, United Kingdom

Abstract

ABSTRACT Cytomegalovirus (CMV) is known to rapidly induce activation of nuclear factor κB (NF-κB) after infection of fibroblast and macrophage cells. NF-κB response elements are present in the enhancer region of the CMV major immediate-early promoter (MIEP), and activity of the MIEP is strongly upregulated by NF-κB in transient-transfection assays. Here we investigate whether the NF-κB-dependent pathway is required for initiating or potentiating human and murine CMV replication in vitro. We show that expression of a dominant negative mutant of the inhibitor of NF-κB-alpha (IκBαM) does not alter the replication kinetics of human or mouse CMV in cultured cells. In addition, mouse embryo fibroblasts genetically deficient for p65/RelA actually showed elevated levels of MCMV replication. Mutation of all NF-κB response elements within the enhancer of the MIEP in a recombinant mouse CMV containing the human MIEP (hMCMV-ES), which we have previously shown to replicate in murine fibroblasts with kinetics equivalent to that of wild-type mouse CMV, did not negatively affect replication in fibroblasts. Taken together, these data show that, for CMV replication in cultured fibroblasts activation of the canonical NF-κB pathway and binding of NF-κB to the MIEP are dispensable, and in the case of p65 may even interfere, thus uncovering a previously unrecognized level of complexity in the host regulatory network governing MIE gene expression in the context of a viral infection.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3