Regulation of gene expression by oxygen in Saccharomyces cerevisiae

Author:

Zitomer R S1,Lowry C V1

Affiliation:

1. Department of Biological Sciences, State University of New York, Albany 12222.

Abstract

The oxygen regulation of two broad categories of yeast genes is discussed in this review. The first is made up of genes regulated by heme, and the second is made up of genes whose regulation is heme independent. Heme-regulated genes fall into two classes: heme-activated and heme-repressed genes. Activation is achieved through one of two transcriptional activators, the heme-dependent HAP1 protein or the heme-activated, glucose-repressed HAP2/3/4 complex. Some of the properties and the DNA-binding sites of these activators are discussed. Heme repression is achieved through the action of the ROX1 repressor, the expression of which is transcriptionally activated by heme. Once ROX1 is synthesized, its function is heme independent. Evidence that ROX1 binds to DNA or is part of a DNA-binding complex is described. Factors which modulate the function of these regulatory proteins are discussed, and a schematic of heme activation and repression is presented. The mitochondrial subunits of cytochrome c oxidase are induced by oxygen in a heme-independent fashion. The translation of one, cytochrome c oxidase subunit III, is dependent upon three nucleus-encoded initiation factors. One of these, PET494, is itself translationally regulated by oxygen in a heme-independent fashion. The expression of at least four other mitochondrially encoded cytochrome subunits is dependent upon specific translation factors, raising the potential for translational regulation as a general mechanism. Finally, a number of anaerobic genes that show heme-independent, oxygen-repressed expression have been identified. These fall into two kinetic classes, suggesting that there are at least two different regulatory circuitries.

Publisher

American Society for Microbiology

Subject

Applied Microbiology and Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3