Affiliation:
1. Department of Life Sciences, National Central University, Jungli, Taiwan
2. Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsin-Chu, Taiwan
Abstract
ABSTRACT
Cytoplasmic and mitochondrial forms of a eukaryotic aminoacyl-tRNA synthetase (aaRS) are generally encoded by two distinct nuclear genes, one of eukaryotic origin and the other of mitochondrial origin. However, in most known yeasts, only the mitochondrial-origin alanyl-tRNA synthetase (AlaRS) gene is retained and plays a dual-functional role. Here, we present a novel scenario of AlaRS evolution in the yeast
Vanderwaltozyma polyspora
.
V. polyspora
possesses two significantly diverged AlaRS gene homologues, one encoding the cytoplasmic form and the other its mitochondrial counterpart. Clever selection of transcription and translation initiation sites enables the two isoforms to be localized and thus functional in their respective cellular compartments. However, the two isoforms can also be stably expressed and function in the reciprocal compartments by insertion or removal of a mitochondrial targeting signal. Synteny and phylogeny analyses revealed that the AlaRS homologues of
V. polyspora
arose from a dual-functional common ancestor through whole-genome duplication (WGD). Moreover, the mitochondrial form had higher synonymous (1.6-fold) and nonsynonymous (2.8-fold) substitution rates than did its cytoplasmic counterpart, presumably due to a lesser constraint imposed on components of the mitochondrial translational apparatus. Our study suggests that asymmetric evolution confers the divergence between the AlaRS paralogues of
V. polyspora
.
Publisher
American Society for Microbiology
Subject
Cell Biology,Molecular Biology
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献