Impact of Cell Surface Molecules on Conjugative Transfer of the Integrative and Conjugative Element ICE St3 of Streptococcus thermophilus

Author:

Dahmane Narimane1,Robert Emilie1,Deschamps Julien2,Meylheuc Thierry23,Delorme Christine2,Briandet Romain2,Leblond-Bourget Nathalie1,Guédon Eric4ORCID,Payot Sophie1ORCID

Affiliation:

1. DynAMic, Université de Lorraine, INRA, Vandœuvre-lès-Nancy, France

2. MICALIS Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France

3. INRA, Plateforme MIMA2, Jouy-en-Josas, France

4. STLO, INRA, Agrocampus Ouest, Rennes, France

Abstract

ABSTRACT Integrative conjugative elements (ICEs) are chromosomal elements that are widely distributed in bacterial genomes, hence contributing to genome plasticity, adaptation, and evolution of bacteria. Conjugation requires a contact between both the donor and the recipient cells and thus likely depends on the composition of the cell surface envelope. In this work, we investigated the impact of different cell surface molecules, including cell surface proteins, wall teichoic acids, lipoteichoic acids, and exopolysaccharides, on the transfer and acquisition of ICE St3 from Streptococcus thermophilus . The transfer of ICE St3 from wild-type (WT) donor cells to mutated recipient cells increased 5- to 400-fold when recipient cells were affected in lipoproteins, teichoic acids, or exopolysaccharides compared to when the recipient cells were WT. These mutants displayed an increased biofilm-forming ability compared to the WT, suggesting better cell interactions that could contribute to the increase of ICE St3 acquisition. Microscopic observations of S. thermophilus cell surface mutants showed different phenotypes (aggregation in particular) that can also have an impact on conjugation. In contrast, the same mutations did not have the same impact when the donor cells, instead of recipient cells, were mutated. In that case, the transfer frequency of ICE St3 decreased compared to that with the WT. The same observation was made when both donor and recipient cells were mutated. The dominant effect of mutations in donor cells suggests that modifications of the cell envelope could impair the establishment or activity of the conjugation machinery required for DNA transport. IMPORTANCE ICEs contribute to horizontal gene transfer of adaptive traits (for example, virulence, antibiotic resistance, or biofilm formation) and play a considerable role in bacterial genome evolution, thus underlining the need of a better understanding of their conjugative mechanism of transfer. While most studies focus on the different functions encoded by ICEs, little is known about the effect of host factors on their conjugative transfer. Using ICE St3 of S. thermophilus as a model, we demonstrated the impact of lipoproteins, teichoic acids, and exopolysaccharides on ICE transfer and acquisition. This opens up new avenues to control gene transfer mediated by ICEs.

Funder

Agence Nationale de la Recherche

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3