Affiliation:
1. The Roslin Institute and Royal (Dick) School of Veterinary Studies, College of Medicine and Veterinary Medicine, University of Edinburgh, United Kingdom
2. The Institute of Technology, University of Tartu, Tartu, Estonia
Abstract
ABSTRACT
The alphavirus Semliki Forest virus (SFV) and its derived vectors induce apoptosis in mammalian cells. Here, we show that apoptosis is associated with the loss of mitochondrial membrane potential followed by the activation of caspase-3, caspase-8, and caspase-9. Cell death can be partially suppressed by treatment with the pan-caspase inhibitor zVAD-fmk. To determine the role of SFV structural proteins in cell death, the temporal course of cell death was compared in cells infected with SFV and cells infected with SFV virus replicon particles (VRPs) lacking some or all of the virus structural genes. In the absence of virus structural proteins, cell death was delayed. The endoplasmic reticulum (ER) stress response, as determined by the splicing of X-box binding protein 1 (XBP1) transcripts and the activation of caspase-12, was activated in virus-infected cells but not in VRP (SFV lacking structural genes)-infected cells. The C/EBP-homologous protein (CHOP) was upregulated by both virus and VRP infections. The virus envelope proteins but not the virus capsid protein triggered ER stress. These results demonstrate that in NIH 3T3 cells, SFV envelope glycoproteins trigger the unfolded protein response of the ER and accelerate apoptotic cell death initiated by virus replicase activity.
Publisher
American Society for Microbiology
Subject
Virology,Insect Science,Immunology,Microbiology
Cited by
56 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献