Superiority of Molecular Techniques for Identification of Gram-Negative, Oxidase-Positive Rods, Including Morphologically Nontypical Pseudomonas aeruginosa , from Patients with Cystic Fibrosis

Author:

Wellinghausen Nele1,Köthe Juliane1,Wirths Beate1,Sigge Anja1,Poppert Sven1

Affiliation:

1. Department of Medical Microbiology and Hygiene, University of Ulm, Ulm, Germany

Abstract

ABSTRACT Phenotypic identification of gram-negative bacteria from Cystic Fibrosis (CF) patients carries a high risk of misidentification. Therefore, we compared the results of biochemical identification by API 20NE with 16S rRNA gene sequencing in 88 gram-negative, oxidase-positive rods, other than morphologically and biochemically typical P. aeruginosa , from respiratory secretions of CF patients. The API 20NE allowed correct identification of the bacterial species in 15 out of 88 (17%) isolates investigated. Agreement between the API and the 16S rRNA gene sequencing results was high only in isolates with an API result classified as “excellent identification.” Even API results classified as “very good identification” or “good identification” showed a high rate of misidentification (67% and 84%). Fifty-two isolates of morphological and biochemical nontypical Pseudomonas aeruginosa , representing 59% of all isolates investigated, were not identifiable or misidentified in the API 20NE. Therefore, rapid molecular diagnostic techniques like real-time PCR and fluorescence in situ hybridization (FISH) were evaluated in this particular group of bacteria for identification of the clinically most relevant pathogen, P. aeruginosa . The LightCycler PCR assay with a P. aeruginosa -specific probe showed a sensitivity and specificity of 98.1% and 100%, respectively. For FISH analysis, a newly designed P. aeruginosa -specific probe had a sensitivity and specificity of 100%. In conclusion, molecular methods are superior over biochemical tests for identification of gram-negative, oxidase-positive rods in CF patients. In addition, real-time PCR and FISH allowed identification of morphologically nontypical isolates of P. aeruginosa within a few hours.

Publisher

American Society for Microbiology

Subject

Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3