Simultaneous Detection of Four Human Pathogenic Microsporidian Species from Clinical Samples by Oligonucleotide Microarray

Author:

Wang Zheng1,Orlandi Palmer A.2,Stenger David A.1

Affiliation:

1. Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC 20375

2. Center for Food Safety and Applied Nutrition, Food and Drug Administration, Laurel, Maryland 20708

Abstract

ABSTRACT Microsporidian species have been rapidly emerging as human enteric pathogens in immunocompromised and immunocompetent individuals in recent years. Routine diagnostic techniques for microsporidia in clinical laboratories are laborious and insensitive and tend to underestimate their presence. In most instances, they are unable to differentiate species of spores due to their small sizes and similar morphologies. In this study, we report the development of another protozoan oligonucleotide microarray assay for the simultaneous detection and identification to the species level of four major microsporidian species: Enterocytozoon bieneusi , Encephalitozoon cuniculi , Encephalitozoon hellem , and Encephalitozoon intestinalis . The 18S small-subunit rRNA gene was chosen as the amplification target, labeled with fluorescence dye, and hybridized to a series of species-specific oligonucleotide probes immobilized on a microchip. The specificity and sensitivity of the microarray were clearly demonstrated by the unique hybridization profiles exhibited by each species of microsporidian tested and its ability to detect as few as 10 spores. In order to assess the applicability of this microarray in a clinical setting, we conducted microarray assays of 20 fecal samples from AIDS patients. Twelve of these samples were positive for the presence of microsporidia and could be confidently identified; 11 of them were positive for more than one species. Our results suggested that this microarray-based approach represents an attractive diagnostic tool for high-throughput detection and identification of microsporidian species in clinical and epidemiological investigations.

Publisher

American Society for Microbiology

Subject

Microbiology (medical)

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3