Dissecting Quasi-Equivalence in Nonenveloped Viruses: Membrane Disruption Is Promoted by Lytic Peptides Released from Subunit Pentamers, Not Hexamers

Author:

Domitrovic Tatiana,Matsui Tsutomu,Johnson John E.

Abstract

Nonenveloped viruses often invade membranes by exposing hydrophobic or amphipathic peptides generated by a proteolytic maturation step that leaves a lytic peptide noncovalently associated with the viral capsid. Since multiple copies of the same protein form many nonenveloped virus capsids, it is unclear if lytic peptides derived from subunits occupying different positions in a quasi-equivalent icosahedral capsid play different roles in host infection. We addressed this question withNudaurelia capensis omega virus(NωV), an insect RNA virus with an icosahedral capsid formed by protein α, which undergoes autocleavage during maturation, producing the lytic γ peptide. NωV is a unique model because autocatalysis can be precisely initiatedin vitroand is sufficiently slow to correlate lytic activity with γ peptide production. Using liposome-based assays, we observed that autocatalysis is essential for the potent membrane disruption caused by NωV. We observed that lytic activity is acquired rapidly during the maturation program, reaching 100% activity with less than 50% of the subunits cleaved. Previous time-resolved structural studies of partially mature NωV particles showed that, during this time frame, γ peptides derived from the pentamer subunits are produced and are organized in a vertical helical bundle that is projected toward the particle surface, while identical polypeptides in quasi-equivalent subunits are produced later or are in positions inappropriate for release. Our functional data provide experimental support for the hypothesis that pentamers containing a central helical bundle, observed in different nonenveloped virus families, are a specialized lytic motif.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3