Salmonella Rapidly Regulates Membrane Permeability To Survive Oxidative Stress

Author:

van der Heijden Joris12,Reynolds Lisa A.1,Deng Wanyin1,Mills Allan3,Scholz Roland1,Imami Koshi4,Foster Leonard J.4,Duong Franck3,Finlay B. Brett123

Affiliation:

1. Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada

2. Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada

3. Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada

4. Center for High-Throughput Biology, University of British Columbia, Vancouver, British Columbia, Canada

Abstract

ABSTRACT The outer membrane (OM) of Gram-negative bacteria provides protection against toxic molecules, including reactive oxygen species (ROS). Decreased OM permeability can promote bacterial survival under harsh circumstances and protects against antibiotics. To better understand the regulation of OM permeability, we studied the real-time influx of hydrogen peroxide in Salmonella bacteria and discovered two novel mechanisms by which they rapidly control OM permeability. We found that pores in two major OM proteins, OmpA and OmpC, could be rapidly opened or closed when oxidative stress is encountered and that the underlying mechanisms rely on the formation of disulfide bonds in the periplasmic domain of OmpA and TrxA, respectively. Additionally, we found that a Salmonella mutant showing increased OM permeability was killed more effectively by treatment with antibiotics. Together, these results demonstrate that Gram-negative bacteria regulate the influx of ROS for defense against oxidative stress and reveal novel targets that can be therapeutically targeted to increase bacterial killing by conventional antibiotics. IMPORTANCE Pathogenic bacteria have evolved ways to circumvent inflammatory immune responses. A decrease in bacterial outer membrane permeability during infection helps protect bacteria from toxic molecules produced by the host immune system and allows for effective colonization of the host. In this report, we reveal molecular mechanisms that rapidly alter outer membrane pores and their permeability in response to hydrogen peroxide and oxidative stress. These mechanisms are the first examples of pores that are rapidly opened or closed in response to reactive oxygen species. Moreover, one of these mechanisms can be targeted to artificially increase membrane permeability and thereby increase bacterial killing by the antibiotic cefotaxime during in vitro experiments and in a mouse model of infection. We envision that a better understanding of the regulation of membrane permeability will lead to new targets and treatment options for multidrug-resistant infections.

Funder

Canadian Institutes for Health Research

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3