Bacteria Present in Carotid Arterial Plaques Are Found as Biofilm Deposits Which May Contribute to Enhanced Risk of Plaque Rupture

Author:

Lanter Bernard B.1,Sauer Karin1,Davies David G.1

Affiliation:

1. Department of Biological Sciences, Binghamton University, Binghamton, New York, USA

Abstract

ABSTRACT Atherosclerosis, a disease condition resulting from the buildup of fatty plaque deposits within arterial walls, is the major underlying cause of ischemia (restriction of the blood), leading to obstruction of peripheral arteries, congestive heart failure, heart attack, and stroke in humans. Emerging research indicates that factors including inflammation and infection may play a key role in the progression of atherosclerosis. In the current work, atherosclerotic carotid artery explants from 15 patients were all shown to test positive for the presence of eubacterial 16S rRNA genes. Density gradient gel electrophoresis of 5 of these samples revealed that each contained 10 or more distinct 16S rRNA gene sequences. Direct microscopic observation of transverse sections from 5 diseased carotid arteries analyzed with a eubacterium-specific peptide nucleic acid probe revealed these to have formed biofilm deposits, with from 1 to 6 deposits per thin section of plaque analyzed. A majority, 93%, of deposits was located proximal to the internal elastic lamina and associated with fibrous tissue. In 6 of the 15 plaques analyzed, 16S rRNA genes from Pseudomonas spp. were detected. Pseudomonas aeruginosa biofilms have been shown in our lab to undergo a dispersion response when challenged with free iron in vitro . Iron is known to be released into the blood by transferrin following interaction with catecholamine hormones, such as norepinephrine. Experiments performed in vitro showed that addition of physiologically relevant levels of norepinephrine induced dispersion of P. aeruginosa biofilms when grown under low iron conditions in the presence but not in the absence of physiological levels of transferrin. IMPORTANCE The association of bacteria with atherosclerosis has been only superficially studied, with little attention focused on the potential of bacteria to form biofilms within arterial plaques. In the current work, we show that bacteria form biofilm deposits within carotid arterial plaques, and we demonstrate that one species we have identified in plaques can be stimulated in vitro to undergo a biofilm dispersion response when challenged with physiologically relevant levels of norepinephrine in the presence of transferrin. Biofilm dispersion is characterized by the release of bacterial enzymes into the surroundings of biofilm microcolonies, allowing bacteria to escape the biofilm matrix. We believe these enzymes may have the potential to damage surrounding tissues and facilitate plaque rupture if norepinephrine is able to stimulate biofilm dispersion in vivo . This research, therefore, suggests a potential mechanistic link between hormonal state and the potential for heart attack and stroke.

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3