Rapid Detection of Mycobacterium tuberculosis Beijing Genotype Strains by Real-Time PCR

Author:

Hillemann Doris1,Warren Rob2,Kubica Tanja1,Rüsch-Gerdes Sabine1,Niemann Stefan1

Affiliation:

1. Forschungszentrum Borstel, National Reference Center for Mycobacteria, D-23845 Borstel, Germany

2. MRC Centre for Molecular and Cellular Biology, Department of Medical Biochemistry, University of Stellenbosch, Tygerberg 7505, South Africa

Abstract

ABSTRACT Mycobacterium tuberculosis strains of the Beijing genotype were first identified in China and neighboring countries and have attracted special attention due to their global emergence and association with drug resistance. To further analyze the spread and special characteristics of Beijing genotype strains, accurate, rapid and sensitive methods that overcome the drawbacks of the classical methods such as IS 6110 DNA fingerprinting or spoligotyping for the identification of strains of this genotype are needed. Based on the nucleotide sequences of M. tuberculosis SAWC0780 and H37Rv, primers and fluorogenic 5′ nuclease (TaqMan) probes for real-time PCR assays specific for Beijing and non-Beijing strains, respectively, were designed. The detection limits for the real-time PCR assays were about 5 and 10 copies of chromosomal DNA, respectively. In mixtures of Beijing and non-Beijing DNA, a multiplex assay was able to detect (i) one copy of Beijing DNA in approximately 1,000 copies of non-Beijing DNA and (ii) one copy of non-Beijing DNA in approximately 2,000 copies of Beijing DNA. In a blinded analysis of a collection of 103 multidrug-resistant strains isolated in Germany in 2001, all 62 Beijing and all 41 non-Beijing strains were correctly identified. In conclusion, the real-time assay allows for the rapid and specific detection of Beijing and non-Beijing strains. The major advantages of this test in comparison to other methods used for the identification of Beijing strains are its simplicity and sensitivity and the fact that amplification and detection occur within one reaction tube.

Publisher

American Society for Microbiology

Subject

Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3